

# WASTEWATER PUMP STATION CONTROL PROGRAMMING CHECKLIST

### PUMP STATION IDENTITY/ LOCATION:

#### **COUNCIL REPRESENTATIVE:**

#### **WORKS CONTRACTOR:**

# SUBCONTRACTOR(S) (*if applicable*):

### DATE:

| Station Design Information                                          | Design Measurements | As-Built Measurements |
|---------------------------------------------------------------------|---------------------|-----------------------|
| Levels recorded as mRL <i>(Moturiki Datum)</i>                      |                     |                       |
| Lid mRL as measured at the top of the Lid Cross Brace               |                     |                       |
| Design mRL for base of Level<br>Transducer                          |                     |                       |
| Design mRL for Wetwell Base                                         |                     |                       |
| Analogue Control Levels to be stated in<br>mm from base of wetwell: |                     |                       |
| Common Stop Level                                                   |                     |                       |
| Duty A Start Level                                                  |                     |                       |
| Standby Start Level                                                 |                     |                       |
| High Level                                                          |                     |                       |
| Critical Alarm Level                                                |                     |                       |
| Storage Empty Level                                                 |                     |                       |
| Storage Full Level                                                  |                     |                       |
| Overflow Invert Level                                               |                     |                       |
| Design Flow Rate:                                                   |                     |                       |
| 1 pump running <i>(L/s)</i>                                         |                     |                       |
| 2 pumps running <i>(L/s)</i>                                        |                     |                       |
| Pump designed start up current (Amps)                               |                     |                       |
| Catchment Plan Information                                          |                     |                       |
| Downstream Pump Station                                             |                     |                       |
| Upstream Pump Stations                                              |                     |                       |

# 1.1.2 PLC Programme

### PLC PROGRAMME INSTALLED:

### **COUNCIL REPRESENTATIVE:**

### **DEVELOPER:**

|                                                          | P1  |    | <b>P</b> 2 | 2  |
|----------------------------------------------------------|-----|----|------------|----|
|                                                          | YES | NO | YES        | NO |
| All core labels on and correct                           |     |    |            |    |
| All trunk lids in place and cut burs removed             |     |    |            |    |
| Cable ties trimmed                                       |     |    |            |    |
| Box labelling present and correct:                       |     |    |            |    |
| • Meter                                                  |     |    |            |    |
| Distribution                                             |     |    |            |    |
| Controls                                                 |     |    |            |    |
| Change Over Switch                                       |     |    |            |    |
| • PLC                                                    |     |    |            |    |
| Instrumentation                                          |     |    |            |    |
| Pump labelling present and correct (for each pump):      |     |    |            |    |
| Pump No                                                  |     |    |            |    |
| • Temp                                                   |     |    |            |    |
| • Leakage                                                |     |    |            |    |
| Reset                                                    |     |    |            |    |
| Analog ammeters scaled for design pumps                  |     |    |            |    |
| Switch labelling present and correct:                    |     |    |            |    |
| Level Control, Light On=Float, Light Off=US, Push Change |     |    |            |    |
| Duty Change                                              |     |    |            |    |
| Cabinet clear of construction debris                     |     |    |            |    |
| External cabinet door close and locks                    |     |    |            |    |
| Internal door close and seal                             |     |    |            |    |
| Locks operate on specific and master keys                |     |    |            |    |

# 1.1.3 Wiring Trace:

### COUNCIL REPRESENTATIVE:

### **DEVELOPER:**

|        |                           |    | СН   | Term Block | PASS |
|--------|---------------------------|----|------|------------|------|
| SITE   | Phase Fail                | 1. | 0/0  |            | TAGO |
| ONE    | Critical Level Alarm      |    | 0/5  |            |      |
|        | Duty A                    | 1: | 0/7  |            |      |
|        | Duty B                    | 1: | 0/6  |            |      |
|        | Common Stop               | 1: | 0/8  |            |      |
|        | Fault Reset / Duty Change | 1: | 0/9  |            |      |
|        | Door Tamper               | l: | 1/0  |            |      |
|        | Flow - Pulse              | l: | 1/13 |            |      |
|        | Flow – Instantaneous      | IN | 3-   |            |      |
|        |                           | IN | 3+   |            |      |
|        | Ultra Sonic Level         | IN | 0-   |            |      |
|        |                           | IN | 0+   |            |      |
|        | Level Control Change      | 1: | 1/7  |            |      |
|        | Battery Low               | l: | 1/15 |            |      |
|        | Level Control Indicator   | O: | 0/2  |            |      |
|        | Wash Solenoid             | O: | 0/3  |            |      |
| Pump 1 | Run                       | l: | 0/1  |            |      |
|        | Fault                     | 1: | 0/2  |            |      |
|        | MiniCas                   | 1: | 1/1  |            |      |
|        | Auto                      | l: | 1/3  |            |      |
|        | Manual                    | I: | 1/5  |            |      |
|        | Start                     | O: | 0/0  |            |      |
|        | СТ                        | IN | 1+   |            |      |
| Pump 2 | Run                       | 1: | 0/3  |            |      |
|        | Fault                     | l: | 0/4  |            |      |
|        | MiniCas                   | l: | 1/2  |            |      |
|        | Auto                      | l: | 1/4  |            |      |
|        | Manual                    | 1: | 1/6  |            |      |
|        | Start                     | O: | 0/1  |            |      |
|        | СТ                        | IN | 2+   |            |      |

This form is intended to ensure that the station meets design requirements for the successful ongoing operation of the Wastewater Pumping Station.

| Council Representative:                    |  |
|--------------------------------------------|--|
| Works Contractor:                          |  |
| Subcontractor(s) ( <i>if applicable</i> ): |  |
|                                            |  |
|                                            |  |
|                                            |  |

# 1.1.4 Level Monitoring Systems

### COUNCIL REPRESENTATIVE:

### **DEVELOPER:**

### **Installation Level Confirmation**

| Parameter                                         | Survey Levels as mRL (Moturiki Datum) |
|---------------------------------------------------|---------------------------------------|
| Lid as measured at the top of the Lid Cross Brace |                                       |
| Base of Level Transducer                          |                                       |
| Storage Invert                                    |                                       |
| Storage Obvert                                    |                                       |
| Critical Level Invert                             |                                       |

Where installed levels differ from the design set-up and cannot be rectified then changes in the station's programmed level controls system need to occur.

### 1.1.5 Level Control Checks

### **COUNCIL REPRESENTATIVE:**

### **DEVELOPER:**

### **Near Blanking Distance Clearance Check**

Ensure that the differential between base of Ultrasonic Level Transducer and obvert of the Overflow pipe is >0.35m.

**NOTE**: The near blanking distance above is valid only for the standard Pulsar DB6. Where the wetwell depth requires alternative types then the near blanking distance will differ and needs to be catered for in the design of the station level monitoring system.

#### **Ultrasonic Near Blanking Clearance Confirmation**

| Item | Parameter                                          | Measure | Reading (e.g. 30.56) |
|------|----------------------------------------------------|---------|----------------------|
| Α.   | Base of Level Transducer                           | mRL     |                      |
| В.   | Critical Alarm Level                               | mRL     |                      |
| C.   | Overflow Pipe Diameter                             | m       |                      |
| D.   | Overflow/Transducer<br>differential(D = A – B – C) | m       |                      |
| E.   | Pass ( > 0.35m)                                    |         |                      |

### **1.1.6** Analogue Monitoring Performance Checks

### COUNCIL REPRESENTATIVE:

### **DEVELOPER**:

Analogue level accuracy check is to occur throughout the operational level span for the station.

The station's level monitoring must meet validated measurements with the greater of +/-10 mm or 1% of operational span. Therefore station monitoring error = (validated measurement – station measurement).

| Approximate Position | Validation<br>Measurement<br><i>(mm)</i> | Station<br>Level<br>Measurement | Measurement<br>Differential<br><i>(mm)</i> | Measurement<br>Error<br>(% of Span) | Pass |
|----------------------|------------------------------------------|---------------------------------|--------------------------------------------|-------------------------------------|------|
| Common Stop<br>Level |                                          |                                 |                                            |                                     |      |
| High Level           |                                          |                                 |                                            |                                     |      |
| Overflow             |                                          |                                 |                                            |                                     |      |

**NOTE**: Due to Analogue display dampening the well must be maintained at a static level for 120 seconds before readings are taken.

### 1.1.7 Float Installation Check.

### COUNCIL REPRESENTATIVE:

### **DEVELOPER:**

The Flygt ENM-10 operates about the tipping point at the top of the float, all measurements for setting and validation of installation are made from point A as shown below to the top of the lid cross brace.

### Flygt ENM Float and Level Setting



| Float          | Distance to<br>Lid <i>(m)</i> | Distance to<br>Base <i>(m)</i> | U/S reading<br>at activation<br>(m) | Flat State Confirmation<br>(NC = Normally Closed)<br>(NO = Normally Open) |
|----------------|-------------------------------|--------------------------------|-------------------------------------|---------------------------------------------------------------------------|
| Critical Alarm |                               |                                |                                     | NC                                                                        |
| Duty A Start   |                               |                                |                                     | NO                                                                        |
| Duty B Start   |                               |                                |                                     | NO                                                                        |
| Common Stop    |                               |                                |                                     | NO                                                                        |

# 1.1.8 MiniCas Supervision Relay Check

### COUNCIL REPRESENTATIVE:

### **DEVELOPER:**

Confirm that the sensors within the pumps are connected correctly to the appropriate MiniCas unit.

|    | Leakage | Temperature | Supply |
|----|---------|-------------|--------|
| P1 |         |             |        |
| P2 |         |             |        |

# 1.1.9 Pump Information Sheet

### COUNCIL REPRESENTATIVE:

### **DEVELOPER:**

Nameplate Data Collection for each pump record the following information for each pump as shown on the right:



| Parameter                    | P1  | P2  |
|------------------------------|-----|-----|
| A Product No.                |     |     |
| B Serial No.                 |     |     |
| C Shaft power                |     |     |
| D Rated speed                |     |     |
| E                            | N/A | N/A |
| F Weight                     |     |     |
| H Curve code                 |     |     |
| J Hz                         |     |     |
| K Power factor               |     |     |
| L Operating duty, cont./int. |     |     |
| M Impeller.                  |     |     |
| N Factory code               |     |     |
| 0                            | N/A | N/A |
| Р                            | N/A | N/A |
| Q Temperature class          |     |     |
| R/U Rated voltage            |     |     |
| S/V Rated current            |     |     |
| T/X Stator connection        |     |     |
| W Special order No.          |     |     |
| Y Motor No.                  |     |     |

### 1.1.10 Pump Performance Checks

### COUNCIL REPRESENTATIVE:

### **DEVELOPER:**



**Before starting Pump Pre-commission Inspection** 

- Make sure that the pump is isolated from the power supply and cannot be energized.
- Make sure that the pump cannot roll or fall over and injure people or damage property.

Pump is isolated from electrical supply

Check that the visible parts on the pump and installation are undamaged and in good condition, including cables.

Check the oil level in the oil housing.

Open the circuit breaker and check that the impeller can be rotated freely.

This is an important step to free mechanical seals prior to electrically starting the pumps to avoid potential damage to the pump.

#### Check that the Impellor clearance is within tolerance (<1.5mm):

P1

P2

On completion and passing of pump static tests the pumps can now be temporarily livened to test direction rotation.

### 1.1.11 Pump Rotation Test

### COUNCIL REPRESENTATIVE:

### **DEVELOPER:**

Check the direction of rotation. The impeller shall rotate clockwise, as viewed from above. When started, the pump will jerk in the opposite direction to the direction in which the impeller rotates.

#### **Mains Power**

P1

P2

### **Generator Power**

P1

P2

On successful completion of rotation tests, re-isolate pumps and inspect guide rail system prior to installing pumps onto their respective pedestals in preparation for pump performance test.

Pump is isolated from electrical supply

Check upper guide rail brackets are secured to well structure

Check that guide rails align vertically between discharge bend and upper guide brackets

Check that the pump lifting handle is secured to pump.

Check that a lifting chain is secured to the pump lifting handle with sufficient length and that the D-shackle pin is secured with stainless wire to prevent damage to the pump.

Check that the lifting chains are secured at the lids and are free of slack to prevent damage to pumps.

Check that the pump cables are secured and free of slack to prevent damage from pump operation

# 1.1.12 Pump Current Draw

### COUNCIL REPRESENTATIVE:

### **DEVELOPER:**

|                             | Start-up reading | 10 seconds post<br>Start | @ 10 seconds<br>post Snore |
|-----------------------------|------------------|--------------------------|----------------------------|
| Clamp on Meter              |                  |                          |                            |
| Stations CT                 |                  |                          |                            |
| Station's Analogue<br>Meter |                  |                          |                            |

### 1.1.13 Pump Riser Tests

### **COUNCIL REPRESENTATIVE:**

### **DEVELOPER:**

Fill the wet well with water to the invert level of the incoming sewer.

With the relevant gate valve open, start one pump in manual mode and check for leaks, pump/motor vibration or noise, and that the well level drops.

Shut gate valve and restart pump and check for any leaks in pipework or at the discharge bend connection.

# 1.1.14 Pump Overload(s) Set?

**COUNCIL REPRESENTATIVE:** 

### **DEVELOPER:**

The pump overload is to be set by an Electrician at the time of the commissioning of the cabinet onsite. This should be set as per the overload settings specified for the pump by the pump manufacturer and as recorded on the pump name plate.

Pump 1

Pump 2

# 1.1.15 Pump Pressure Head Measurement

###